Effects of time-periodic linear coupling on two-component Bose–Einstein condensates in two dimensions

نویسندگان

  • H. Susanto
  • B. A. Malomed
چکیده

We examine two-component Gross–Pitaevskii equations with nonlinear and linear couplings, assuming self-attraction in one species and selfrepulsion in the other, while the nonlinear inter-species coupling is also repulsive. For initial states with the condensate placed in the self-attractive component, a sufficiently strong linear coupling switches the collapse into decay (in the free space). Setting the linear-coupling coefficient to be time-periodic (alternating between positive and negative values, with zero mean value) can make localized states quasi-stable for the parameter ranges considered herein, but they slowly decay. The 2D states can then be completely stabilized by a weak trapping potential. In the case of the high-frequency modulation of the coupling constant, averaged equations are derived, which demonstrate good agreement with numerical solutions of the full equations. © 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disorder-induced order in two-component Bose-Einstein condensates.

We propose and analyze a general mechanism of disorder-induced order in two-component Bose-Einstein condensates, analogous to corresponding effects established for XY spin models. We show that a random Raman coupling induces a relative phase of pi/2 between the two BECs and that the effect is robust. We demonstrate it in one, two, and three dimensions at T=0 and present evidence that it persist...

متن کامل

Collision Dynamics of Two Bose-Einstein Condensates in the Presence of Raman Coupling

A collision of two-component Bose-Einstein condensates in the presence of Raman coupling is proposed and studied by numerical simulations. Raman transitions are found to be able to reduce collision-produced irregular excitations by forming a time-averaged attractive optical potential. Raman transitions also support a kind of dark soliton pairs in two-component Bose-Einstein condensates. Soliton...

متن کامل

Modulational instability of two-component Bose-Einstein condensates in an optical lattice

We study modulational instability of two-component Bose-Einstein condensates in an optical lattice, which is modelled as a coupled discrete nonlinear Schrödinger equation. The excitation spectrum and the modulational instability condition of the total system are presented analytically. In the long-wavelength limit, our results agree with the homogeneous two-component Bose-Einstein condensates c...

متن کامل

A Generalized-Laguerre--Fourier--Hermite Pseudospectral Method for Computing the Dynamics of Rotating Bose--Einstein Condensates

A time-splitting generalized-Laguerre-Fourier-Hermite pseudospectral method is proposed for computing the dynamics of rotating Bose-Einstein condensates (BECs) in two and three dimensions. The new numerical method is based on the following: (i) the use of a time-splitting technique for decoupling the nonlinearity; (ii) the adoption of polar coordinate in two dimensions, and resp. cylindrical co...

متن کامل

Ground States and Dynamics of Spin-Orbit-Coupled Bose-Einstein Condensates

We study analytically and asymptotically as well as numerically ground states and dynamics of two-component spin-orbit-coupled Bose-Einstein condensates (BECs) modeled by the coupled Gross-Pitaevskii equations (CGPEs). In fact, due to the appearance of the spin-orbit (SO) coupling in the two-component BEC with a Raman coupling, the ground state structures and dynamical properties become very ri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008